CArl
Code Arlequin / C++ implementation
libmesh_assemble_lin_homogeneous__max_x_traction.cpp File Reference

Go to the source code of this file.

Functions

int main (int argc, char **argv)
 Program used to assemble the rigidity matrix and the vectors of a linear, homogeneous elasticity model with a traction applied to $x_{\mbox{Max}}$ face. More...
 

Function Documentation

int main ( int  argc,
char **  argv 
)

Program used to assemble the rigidity matrix and the vectors of a linear, homogeneous elasticity model with a traction applied to $x_{\mbox{Max}}$ face.

Usage: ./libmesh_assemble_lin_homogeneous__max_x_traction -i [input file]

The input file is parsed by the get_input_params(GetPot& field_parser, libmesh_assemble_input_params& input_params) function, and it contains the following parameters.

Required parameters:

  • Mesh : path to the mesh.
  • PhysicalParameters : physical parameters.
  • SystemType : parameter used to tell the assembler which weight functions must be used. Values: Micro or Macro.
  • MeshWeight : path to the mesh defining the domains of the Arlequin weight parameters.
  • WeightIndexes : path to the indices of the domains of the Arlequin weight parameters.

Optional parameter:

  • OutputBase or --output : base of the output files (including folders). Default: test_system.

Boolean flags:

  • ExportRBVectors : build and export the rigid body modes vectors.

Definition at line 23 of file libmesh_assemble_lin_homogeneous__max_x_traction.cpp.

23  {
24 
25  // [USER] Traction force density
26  std::vector<double> traction_density(3,0);
27  traction_density[0] = 100.;
28 
29  // --- Initialize libMesh
30  libMesh::LibMeshInit init(argc, argv);
31 
32  // Do performance log?
33  const bool MASTER_bPerfLog_carl_libmesh = true;
34  libMesh::PerfLog perf_log("Main program", MASTER_bPerfLog_carl_libmesh);
35 
36  // libMesh's C++ / MPI communicator wrapper
37  libMesh::Parallel::Communicator& WorldComm = init.comm();
38 
39  // Number of processors and processor rank.
40  int rank = WorldComm.rank();
41  int nodes = WorldComm.size();
42 
43  // --- Set up inputs
44 
45  // Command line parser
46  GetPot command_line(argc, argv);
47 
48  // File parser
49  GetPot field_parser;
50 
51  // If there is an input file, parse it to get the parameters. Else, parse the command line
52  std::string input_filename;
53  if (command_line.search(2, "--inputfile", "-i")) {
54  input_filename = command_line.next(input_filename);
55  field_parser.parse_input_file(input_filename, "#", "\n", " \t\n");
56  } else {
57  field_parser = command_line;
58  }
59 
60  libmesh_assemble_input_params input_params;
61  get_input_params(field_parser, input_params);
62 
63  // Check libMesh installation dimension
64  const unsigned int dim = 3;
65 
66  libmesh_example_requires(dim == LIBMESH_DIM, "3D support");
67 
68  // --- Declare the three meshes to be intersected
69 
70  // - Parallelized meshes: A, B, mediator and weight
71  perf_log.push("Meshes - Parallel","Read files:");
72  libMesh::Mesh system_mesh(WorldComm, dim);
73  system_mesh.read(input_params.mesh_file);
74  system_mesh.prepare_for_use();
75 
76  libMesh::Mesh mesh_weight(WorldComm, dim);
77  mesh_weight.allow_renumbering(false);
78  mesh_weight.read(input_params.mesh_weight_file);
79  mesh_weight.prepare_for_use();
80 
81  perf_log.pop("Meshes - Parallel","Read files:");
82 
83  // --- Generate the equation systems
84  perf_log.push("System setup:");
85 
86  // Set the equation systems object
87  libMesh::EquationSystems equation_systems(system_mesh);
88 
89  // Add linear elasticity and physical parameters systems
90  libMesh::LinearImplicitSystem& elasticity_system
91  = add_elasticity(equation_systems);
92 
93  // Initialize the equation systems
94  equation_systems.init();
95 
96  // Homogeneous properties for the macro system
97  set_homogeneous_physical_properties(equation_systems, input_params.physical_params_file);
98 
99  // Set the weight function object
100  weight_parameter_function system_weight(mesh_weight);
101  system_weight.set_parameters(input_params.weight_domain_idx_file);
102 
103  perf_log.pop("System setup:");
104 
105  // Assemble!
106  assemble_elasticity_with_weight_and_traction(equation_systems,"Elasticity",system_weight,
107  input_params.system_type,
109  traction_density);
110 // Print MatLab debugging output? Variable defined at "carl_headers.h"
111 #ifdef PRINT_MATLAB_DEBUG
112  elasticity_system.matrix->print_matlab(input_params.output_base + "_sys_mat.m");
113  elasticity_system.rhs->print_matlab(input_params.output_base + "_sys_rhs_vec.m");
114 #endif
115 
116  // Export matrix and vector
117  libMesh::PetscMatrix<libMesh::Number> * temp_mat_ptr = libMesh::cast_ptr<libMesh::PetscMatrix<libMesh::Number> * >(elasticity_system.matrix);
118  libMesh::PetscVector<libMesh::Number> * temp_vec_ptr = libMesh::cast_ptr<libMesh::PetscVector<libMesh::Number> * >(elasticity_system.rhs);
119 
120  carl::write_PETSC_matrix(*temp_mat_ptr, input_params.output_base + "_sys_mat.petscmat");
121  carl::write_PETSC_vector(*temp_vec_ptr, input_params.output_base + "_sys_rhs_vec.petscvec");
122 
123  // If needed, print rigid body vectors
124  if(input_params.bCalculateRBVectors)
125  {
126  MatNullSpace nullsp_sys;
127  build_rigid_body_vectors(elasticity_system,nullsp_sys);
128  write_rigid_body_vectors(nullsp_sys,input_params.output_base,WorldComm.rank());
129  MatNullSpaceDestroy(&nullsp_sys);
130  }
131 
132  return 0;
133 }
void set_homogeneous_physical_properties(libMesh::EquationSystems &es, std::string &physicalParamsFile)
Set the homogeneous physical properties from a file.
void write_rigid_body_vectors(MatNullSpace &nullsp_sys, const std::string output_base, int rank)
Export the rigid body mode vectors to a folder.
std::string mesh_weight_file
Path to the mesh containing the weight region indices.
void get_input_params(GetPot &field_parser, feti_iterate_params &input_params)
Parser function for the coupled solver test programs.
bool bCalculateRBVectors
Build and export the rigid body modes vectors?
void assemble_elasticity_with_weight_and_traction(libMesh::EquationSystems &es, const std::string &system_name, weight_parameter_function &weight_mask, WeightFunctionSystemType system_type, int traction_boundary_id, std::vector< double > traction_density)
Assemble homogeneous elasticity with domain weights and traction.
void write_PETSC_vector(libMesh::PetscVector< libMesh::Number > &input_vec, const std::string &filename, int dim=1)
std::string physical_params_file
Physical parameters.
void build_rigid_body_vectors(libMesh::ImplicitSystem &input_system, MatNullSpace &nullsp_sys)
Build the rigid body modes associated to a given system.
libMesh::ImplicitSystem & add_elasticity(libMesh::EquationSystems &input_systems, libMesh::Order order=libMesh::FIRST, libMesh::FEFamily family=libMesh::LAGRANGE)
Add a linear elasticity libMesh::LinearImplicitSystem to the input libMesh::EquationSystems& input_sy...
std::string weight_domain_idx_file
Path to the file identifying the weight function regions.
WeightFunctionSystemType system_type
Indicates if the system to be assembled is a micro or a macro system (used to choose the proper weigh...
std::string mesh_file
Path to the system mesh.
std::string output_base
Output filename base.
void write_PETSC_matrix(Mat input_mat, const std::string &filename, int rank, MPI_Comm comm=PETSC_COMM_WORLD, int dim=1)